((6/5)x^2)-(5x)=0

Simple and best practice solution for ((6/5)x^2)-(5x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((6/5)x^2)-(5x)=0 equation:



((6/5)x^2)-(5x)=0
Domain of the equation: 5)x^2)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
((+6/5)x^2)-5x=0
We add all the numbers together, and all the variables
-5x+((+6/5)x^2)=0
We multiply all the terms by the denominator
-5x*5)x^2)+((+6=0
Wy multiply elements
-25x^2+6=0
a = -25; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-25)·6
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{6}}{2*-25}=\frac{0-10\sqrt{6}}{-50} =-\frac{10\sqrt{6}}{-50} =-\frac{\sqrt{6}}{-5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{6}}{2*-25}=\frac{0+10\sqrt{6}}{-50} =\frac{10\sqrt{6}}{-50} =\frac{\sqrt{6}}{-5} $

See similar equations:

| 6x+4(x+5)-(70)=0 | | 6/5x^2-5x=0 | | -2(3l-4)=38 | | 6x+(x+5)=70 | | x+3x+(-33)=150 | | 3(3j-4)=34 | | B+56=4b+21 | | 33+b+23=4b+21 | | 4a+26=6a | | 4(2x+2)-2(x+2)=10-3(x=2) | | 2y+33+48=9y-24 | | 8x-21-42=5x | | 4w+40=6w | | 2s+1=s+49 | | 2a-5+17=a+50 | | 12p-3=7p+35 | | 52-5p=6p-7 | | 3z-29=z+31 | | 31+7w+11=21w | | x=2(-20+7)-1 | | 15s+27=22s-28 | | 6c-50+15=c+50 | | 32+4p-48=p+50 | | 49+c+15=3c+6 | | 11=2/3x+1 | | 4s+54=6s+19 | | 3(5x)=43 | | 4s+24+30=6s+19 | | 23c+33c=39c+34 | | 31+4a-49=a+48 | | 42+11v+9=19v+3 | | 30+31w-42=28w |

Equations solver categories